技术路径差异
最后,就是成本。
这一环节往往决定着成败,再好的技术如果不能有效降低成本的话,替代全是空谈。
据日产的规划称2028全固态电池能够将电池组的成本降至每千瓦时75美元(折合人民币约478元),未来会将成本进一步降低至每千瓦时65美元(折合人民币约413元)。
而当前三元锂电池的成本超过了1000元/千瓦时左,未来原材料较为紧缺的情形下,降本空间不容乐观。
如此来看,如果固态电池按照预期规划发展,那么便存在着广阔的替代市场。那么,接下来问题便来到了具体技术路径的选择上。
目前这一阶段,固态电池仍会采用液态锂电池的正负极,替换的是电解液和隔膜。那么,决定技术路径的差异的便是对电解质选择带来的差异。
前文提到,目前主要的电解质技术路径中,由于聚合物在4V以上电压工作下容易被电解,并且需要超过室温条件下才能正常工作的特点,即便目前已经量产但是也并非未来的技术选择。
氧化物主要分为薄膜型和非薄膜型。
薄膜型主要采用LiPON(锂磷氧氮)这种非晶态氧化物作为电解质材料,而非薄膜型则指除LiPON以外的晶态氧化物电解质,其中,以LLZO(锂镧锆氧)为主流。
薄膜型产品性能优异,已在微型电子、消费电子领域实现较初级、小范围应用。
但是,薄膜型电池容量很小,往往不到mAh级别,在微型电子、消费电子领域勉强够用,到了乘用车Ah级别时缺点则暴露无遗。
业界有尝试将其串并联增加电池组实现提升电池容量的方法,却存在着高昂的成本和工艺困难等问题。
而非薄膜型氧化物产品综合性能出色,是当前开发热门。
已成为中国企业重点开发的方向,台湾辉能与江苏清陶都是此赛道的领跑企业。已经有部分产品投放市场,但也存在着离子电导率低于薄膜型的缺点。
资本聚焦的另外一条技术路径便是硫化物电池。
硫化物主要包括thio-LISICON、LiGPS、LiSnPS、LiSiPS、Li2S-P2S5、Li2S-SiS2、Li2S-B2S3等,其电导率接近甚至超过有机电解液。
同时具有热稳定高、安全性能好、电化学稳定窗口宽(达5V以上)的特点,在高功率以及高低温固态电池方面优势突出。
可是,大部分硫化物材料空气稳定性差,会与水反应形成刺激性的硫化氢气体。可以说其开发潜力最大,同时也是最困难的。
在生产工艺上,需要涂布+多次热压、添加缓冲层改善界面性能。
此外,新材料也在不断面世。几个月前,由中国科学技术大学教授马骋团队设计并合成的一种锂电池固态电解质新材料——氯化锆锂。
据报道,氯化锆锂的问世,成功将50微米厚度的原材料成本降低至1.38美元/平方米,而此前最廉价的氯化物固态电解质相对应的成本为23.05美元/平方米。
据悉,原材料成本达到10美元/平方米是固态电解质具备竞争力的界限。当然,问题同样存在,稳定性较差是限制其产业化发展的关键,目前该团队正在努力攻克这一环节。
从未来固态锂电池产业的发展方向上来看,业界认知相差不大,基本上是从液态锂电池-半固态-固态;先完成对电解液隔膜的替代,而后进行正极负极的替代。
为解决全固态电池内部的界面接触难题,同时充分利用现有液态锂离子电池的生产工艺和设备,降低制造成本。目前固态电池技术路线为优先发展混合固液锂电池,逐步降低液态电解质的含量,最后实现全固态锂电池。
可以说,固态电池的工艺路线尚不成熟,产业化仍需时间,降本之路长路漫漫。
但另一方面在资本推动,技术路径广铺,人才聚焦的趋势下有望加快生产学习曲线,缩短工艺know-how时间,产业化的到来可能超出预期。
据预测,2020~2030年固态电池出货量将高速增长,全球需求量在2020年、2025年、2030年分别有望达到1.7GWh、44.2GWh、494.9GWh,2030年全球市场空间有望达到1500亿元以上。
尾声
新能源车需求高企的背景下,对于动力电池的争夺尤为激烈,虽然目前液态锂电池独霸一方,可是,钠电池、铝电池、氢燃料电池、固态锂电池等均发起了挑战。
然而,正如诸子百家争鸣的带来了学术上的繁荣局面一样,各种技术路径相应地在储能、商务车、乘用车等领域找到了自己的应用方向。
可以确定的是,多种技术路径的竞争对于产业的发展是有益的,有望缩短产业的认知时间,促进产业良性发展。
即便遥远,有些事是注定要发生的,这是事物发展的规律使然。
过程可能步履蹒跚,艰难困苦,错综复杂,但本着第一性原则,站在终点向后看,一切看起来都是必将发生的事,顺其自然。
新技术的变革需要完成从研发到落地,从推广到替代的过程。
这一切,需要的是时间。