上周,有一个B站UP主火了,他把自己的自行车改造成了无人驾驶的“真·自行车”,给自行车装上了三个电机、一个激光雷达、一个AI运算核心等零件。
这些工作的第一步,是他把车的尺寸、结构精细地输入电脑,做出了一个类似CAD的结构图, 基于这辆虚拟的自行车,他定制加工了组件;随后,这辆数字车被输入游戏引擎,引入重力等因素,就可以用来初步调整各项参数,让只有两个轮子的自行车能稳稳地站在地上。
他把这辆软件中的自行车,称作现实中被改装的那辆车的“数字孪生”。
杨景诒、刘冬宇 | 作者
刘冬宇 | 编辑
放大灯团队 | 策划
1
从《模拟人生》到“数字孪生”
《模拟人生》系列的历史已有21年,至今仍长盛不衰,这离不开它对现实世界的刻画——玩家在游戏不光可以自行决定人格特质、生活习惯,还能决定社交活动和婚姻生育。
自不必说,人生模拟器是一个荒诞的概念,它离真实世界相差甚远;但在另一些电子游戏中,对真实世界、物理规律与机械的还原,成了游戏最关键的卖点——例如《微软模拟飞行》,它需要玩家买一套仿真的飞机控制器,体验起降、飞行过程,甚至有人怀疑,“9·11事件”中的恐怖分子,可能就用电子游戏学习驾驶真正的飞机。也比如《坎巴拉太空计划》,其中的物理模型,与现实的火箭发射相差无几。
这些游戏,都在尝试着在虚拟空间里创造某种真实性,这是一种“仿真”——而仿真的潜力,远不止于满足娱乐需求,在工业生产中更需要“模拟经营”,用仿真工具来低成本地验证某项设计是否有效,或者提前发现致命错误。
在音箱的设计中,箱体与单元的结构,就可以通过仿真软件计算出音箱输出的声音特性,而在土木工程里,仿真软件更是计算结构强度、分析材料选择的必备工具。
就在今年高考填报志愿中,中山大学就将土木类专业划入计算机大类[1]——仿真软件成了各行各业的重要工具,或许就是这种专业划分的原因之一。
这些“仿真”,与UP主的自行车的“数字孪生”,又有什么区别?毕竟它们看起来都是数字世界的物体。
数字孪生的概念可以追溯至2002年,美国工业制造工程协会举办的一次论坛,密歇根大学的迈克尔·格里弗斯博士提出了“信息镜像模型”的概念,后被称作“数字孪生”。
为了更容易理解,我们也可以把数字孪生叫做数字镜像,或者数字化映射。它利用3D建模、传感器、物联网等技术手段,在线上复制一个与现实几乎一致的“数字体”。这个数字体能够通过大量数据,记录现实中的一举一动,“投射”到系统中。
用人话总结一下,仿真是基于现实的规律,创造出虚拟的物体,而数字孪生,则是把真实世界的真实事物,可以是物体,也可以是某种过程,经过精确测量后,在虚拟空间创造出的可以反映真实情况的数码复制体。
共同之处是,他们都能成为人们的好帮手。
某种程度上说,你可能在各处都能见到实时监控数据的大屏幕,那也是种简单的数字孪生;而苹果近年大力推进AR,其中一个应用,就是让普通消费者用手机上的激光雷达,扫描所在的房间与家具,将结构和尺寸录入手机软件,就可以生成你的房间的数字孪生——当然,精度不是很高。
其实,数字孪生不仅可以帮UP主改造自行车,更能成为工业生产、城市管理等领域的重要工具。
在获得制造业的垂青前,数字孪生主要用于军工。
2009年,美国国防部提出“机身数字孪生”的概念,将数字孪生用于航空航天飞行器的维护。另外,通过飞行器身上的传感器,相关实验室还能收集到飞行器的飞行数据,用于后续研究[2]。2012年,NASA发布了一项“建模、仿真、信息技术和处理”路线图,数字孪生这才被更多人了解。
此后数年,数字孪生一直被美国空军所看好。
但它进入民用生产领域的历史并不长,直到2015年5月,通用电气推出数字化风电场,才把数字孪生技术推向商用。2017年,更多国际巨头先后涉足数字孪生技术:
西门子发布了数字孪生体应用模型;
美国参数技术公司推出基于数字孪生技术的IoT解决方案;
达索、通用电气等企业也开始宣传数字孪生技术。
而在国内,阿里巴巴等互联网公司也紧随趋势,纷纷布局数字孪生市场。根据阿里云此前的公开新闻,在城市大脑[3]、钢铁水泥、服装制造[4]等领域,数字孪生的概念已经投入实际应用。
数字孪生技术迅速成为工业生产的宠儿,自然是因为它有助于生产。中国工程院院士谭建荣曾在2020年指出,数字孪生应用于工业领域,能够实现资源调配、智能化生产,显著提高生产效率。[5]
2016~2020年,数字孪生连续四年入选分析公司Gartner的“十大战略科技发展趋势”。Gartner 的一份2019年的报告预测,到2021年,全球将有一半的大型工业企业,在生产中使用数字孪生技术,而这能使他们的生产效率提高10%。[6]
咨询公司MarketsandMarkets的数据则显示,全球数字孪生市场将在未来快速增长,规模从2019年的38亿美元,增长至2025年的358亿美元。此外,亚太地区市场规模增速也会远超其他地区。[7]
为什么数字孪生能提高生产效率?它是如何工作的?要回答这些问题,首先得看看制造业的数字孪生是什么样子——在工厂里,数字孪生复制的不再是一辆自行车、一架飞机,而是一条生产线。