车载导航简史:从卫星定位地图到高精地图

vehicle公众号
关注

在前面《浅谈高阶智能驾驶-领航辅助的技术与发展》中,我们介绍了领航辅助的功能和发展前景,而大多数主机厂实现领航辅助,都需要基于高精度地图。今天就简单介绍一下,车载导航的简史 - 从服务人的卫星定位地图到服务车的高精地图。

试着去回答一下几个问题:

车载导航经历了怎样的发展史?

地图图商们发生了哪些商战往事?

高精地图有哪些难点?

高精地图市场未来走势?

高精地图是不是智能驾驶的必须?

1-车载导航经历了怎样的发展史?

从服务人到服务汽车

导航,想象一下我们身处一个完全陌生的地方,想要去另一个地方,我们主要需要解决三个问题:1. 我在哪儿(定位) 2. 我的目的地在哪儿 3. 我要怎么过去(路径规划)。

要解决“我在哪儿”的问题,也就是定位。定位分为相对定位和绝对定位。在GPS出现之前,我们的定位方式都是相对定位,比如说基于某座山,某条路,某条河,对比前人测绘出来的地图,来判断我们身处什么位置。我们日常生活中,如果不借助导航软件的话,人类的思维习惯就是通过视觉观察周围的环境,某栋楼,某个地标,某个车道标志等来判断自己所处的位置。

相对定位的局限性在于,如果视觉场景中没有相对标志性的物体,人类就无法判断自己在什么位置了。比如沙漠,草原,森林,或者未开发的建筑比较少的郊区,或者城市的高楼建筑群,此时人的视觉范围内都是千篇一律的场景,自然无法判断自己的位置。而GPS的出现就解决了这个问题。

GPS 的全称是导航星测时和测距全球定位系统,简称全球定位系统(Global Position System,GPS)。我们经常在文章中看到的GNSS,是全球卫星导航系统(GNSS)是卫星导航的统称,是除了GPS以外,还包含目前俄罗斯的GLONASS、中国的北斗,欧洲的伽利略这四大导航系统。

GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。这个原理解释起来比较复杂(其实我也没太看懂),我们可以简单理解为,天上有至少24颗卫星,保证我们在地球任意一个位置都能至少接收到4颗卫星的信号,通过4颗卫星相对地球的位置,定位出我们相对于地球的绝对位置,也就是我们初中地理学过的经度和纬度。

有了GPS以后,我们就可以实现电子导航了。第一代电子导航大约出现在2000年左右,当时的电子导航地图还需要先将所在城市的地图下载到本地。车载GPS导航系统内置的GPS天线收到GPS的数据信息,结合储存在车载导航仪内的电子地图,通过GPS卫星信号确定的位置坐标与此相匹配,进行确定汽车在电子地图中的位置。

第一代车载电子导航有两个主要问题:

·无法实时更新。这时候的导航地图基本上都是以TF卡形式本地存储的。所以每隔一段时间需要去4S店下载更新地图,而且每次更新还需要收费。

·由于使用离线地图,没有实时道路交通数据,路线规划时无法考虑实际道路的拥堵情况。

随着互联网的发展,出现了第二代电子导航,也就是我们目前日常使用的电子导航,基本解决了这两个问题。首先是本地数据联网,引入了大数据和云计算,规划路线时可以考虑实时交通,还能预估路上所需时间。同时更新地图可以通过OTA进行,2-3个月就可以更新一次,基本满足日常需求。

GPS的出现,算是解决了绝对定位的问题。但是,GPS的精度通常只有10米级。要知道标准城市道路宽度为3.5m-3.75m,双向4车道宽度也就是15米左右。这就意味着,仅仅依靠GPS定位,只能判断车子在哪条路上,无法判断车子在哪条车道上,车主驾驶时就会遇到变道不及时,走错车道等情况。所以,我们需要寻求其他技术来实现更精确的定位。

RTK( RealTime Kinematic),实时动态测量技术,是以载波相位观测为根据的实时差分GPS(RTDGPS)技术,它是测量技术发展里程中的一个突破,它由基准站接收机、数据链、?流动站接收机三部分组成。?在基准站上安置1台接收机为参考站,?对卫星进行连续观测,并将其观测数据和测站信息,通过无线电传输设备,实时地发送给流动站,流动站GPS接收机在接收GPS卫星信号的同时,通过无线接收设备,接收基准站传输的数据,然后根据相对定位的原理,实时解算出流动站的三维坐标及其精度(即基准站和流动站坐标差△X、△Y、△H,加上基准坐标得到的每个点的WGS-84坐标,通过坐标转换参数得出流动站每个点的平面坐标X、Y和海拔高H)。(以上来自百度百科)

是不是觉得每个字都看得懂,但连成句子以后完全看不懂?没关系,我也看不懂。我在网上找了一张图。可以简单理解为:增加了一些固定的基站,这些基站相当于一个绝对定位的参考系。基站附近的移动物体可以从基站收到信号,结合自身收到的GPS信号,从而矫正自身卫星定位结果,实现亚米级定位。RTK的供应商国内第一的就是千寻位置,全国建立超过2600个地基增强站,这个可以在很多位置可以覆盖高精度定位。对了,千寻也是阿里巴巴投资的,持股占比41.9%。

定位问题解决了,但是我们日常使用手机导航的时候也会发现,在很多地方,比如天桥,隧道,高楼,手机APP会提示GPS信号弱。这时候,就需要IMU惯性导航定位来辅助了。

IMU(Inertial Measurement Unit),即惯性测量单元,用于测量物体三轴姿态角(或角速率)以及加速度。利用惯性元件(加速度计)来测量运载体本身的加速度,经过积分和运算得到速度和位置,从而达到对运载体导航定位的目的。组成惯性导航系统的设备都安装在运载体内,工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰,是一种自主式导航系统。(百度百科)

简单理解:想象你走进了一个漆黑的隧道里,假设你估计自己每秒中跨出去一步,一步距离为0.5米,你心中默念10秒,那么你可以估算自己此时的位置距离隧道口为5米。这样,虽然你看不见周围物体,但依然可以知道自己大致位置。当然,由于步长的误差和读秒的误差,走得越远,跟实际位置的误差就越大。

上面的场景是一个一维空间的运动,把这个场景替换为三维的,通过IMU得到的线速度和角速度,我们就可以知道自己在三维空间中的相对位置。这就是惯性导航的原理。

惯性导航可以实现对GPS的补偿,在一些GPS信号比较弱,或者GPS更新频率较低的场景下,可以实现一段时间内的自主导航。当然,这个时间不能太长,否则就不精确了。

而随着自动驾驶技术的出现,高精度地图(High definition)需求也应运而生。传统地图是服务于人,主要起到辅助驾驶员判断大致位置的作用,车辆的控制还是由驾驶员来操作,因此其精度一般只需要做到10米级。而自动驾驶汽车需要精确知道车辆在路上的位置,这个位置需要精确到在哪个车道,跟路边隔离带,马路牙子距离多少,这就要求地图的精度越高越好,甚至需要做到厘米级。高精度地图含有大量道路矢量元素信息(车道线位置、类型、宽度等)以及车道周边的固定对象信息(交通信号灯、交通标志、障碍物、路边地标等),形成对路网精确的三维表征(厘米级精度),比如路面的几何结构、道路标示线的位置、周边道路环境的点云模型等。高精度地图在L3级别以上的辅助/自动驾驶承担着重要任务:

·定位,将车载GPS、IMU、LiDAR或摄像头等的数据和高精度地图数据进行匹配,从而确定车辆的位置;

·了解路况,导航系统可以准确定位地形、物体和道路轮廓,从而引导车辆行驶;尤其在传感器受环境影响失灵的情况下(大雾、冰雹、大雨),高精度地图仍可全天候工作,可以提供自动驾驶所需信息;

·看的更远,帮助自动驾驶车辆对超出视野范围的路况进行处理。另外,高精度地图比起传统地图,新鲜度要求极高。根据博世提出来的定义,无人驾驶时代所需要的局部动态地图数据依据更新频率可以划分为四类:永久静态数据(更新频率为1个月)、半永久静态数据(频率为1小时)、半动态数据(频率为1分钟)、动态数据(频率为1秒)。

说了这么多,可以简单理解为:传统地图服务的是人,人可以根据对突发事件和信息进行加工处理。而高精度地图服务的是机器,计算机做出正确决策需要基于实时的准确的信息的输入,因此要求地图的高精度,和高频率更新。

2-地图图商们发生了哪些商战往事?

BAT崛起

车载导航从进入汽车圈开始,图商们的厮杀也就开始了。

2000年,丰田曾向外透露,一套丰田汽车电子导航系统,在日本的售价折合人民币1万多元。而中国的汽车市场从2000年开始进入一个高速增长期,从2001年的年产200多万辆增长到了2009年的千万辆级别,年均增长速度达21.6%。到2010年底,我国汽车产量和销量更是双双突破了1800万辆。这使得电子地图成为一座金矿。在那个智能手机还未出现的年代,图商靠着汽车生意活得非常滋润。2013年,在导航前装市场,四维图新连续七年分走超60%的市场份额,而凯立德则在后装市场拿到了超过70%的份额。

电子地图这座金矿很快吸引了互联网巨头。2013年阿里收购了高德。百度地图直接倒贴钱给手机厂商让他们预装百度地图,逼得高德地图也不得不给手机厂商补贴。

2013年8月,百度突然宣布,原本收费30元的百度导航APP永久免费,且对已经付费用户全额退款。约4小时后,高德地图也宣布导航免费。免费策略直接导致高德2013年全年亏损1.55亿元。

互联网巨头对战,旁人遭殃。曾经的导航巨头凯立德坚持收费模式,一直到2016年才依依不舍的给用户免费使用,但市场份额已经丢光。2017年凯立德连续三年亏损,亏损额度高达1.85亿元,于2018年从新三板退市。另一个导航一哥四维图新,从曾经的前装市场70%份额,2018年下跌到38%(数据来源:新浪财经)。

在移动互联时代,导航地图市场基本被BAT三家垄断。

但自动驾驶的兴起,使得地图格局有了进一步变化的可能。

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存