自动驾驶,如何赢得信任?
如何突破路测的瓶颈?从人的角度来看,自动驾驶首先要做的就是赢得消费者信任。
谈擎说AI认为,基于对信任的破局,大致有三条比较明朗的路径:
第一个,最稳妥,饼也是最大的,即用技术攀峰从而真实现百分百安全。
听起来荡气回肠又决绝,不过技术攀峰有多难?今天越来越多L4企业扎堆涌入辅助驾驶赛道,已经可以让我们窥见一斑。
从技术层面来看,想要真正实现百分百安全的无人驾驶,车路协同大概率是绕不开的,悲观地看,何时能够实现,今天确实是难以预测的。
第二个,委曲求全,把一步到位的愿景退而求其次。
既然自动驾驶在安全、信任及伦理等等问题上,今天仍得不到很好地处理,那L2这样的“体验卡”,自然就是一个很好地商业化方式。
就像是结婚,既然两个人互不信任,索性还是先处着。
如果说十年前一步到位和委曲求全哪个才是正解,行业其实很难有一个精准的判断,但今天我们已经可以确认,特斯拉在一定程度上已经战胜了Waymo。
乘用车ADAS之于自动驾驶,本质上的差异在于,ADAS不是要去解决问题,而是最大化地避免问题,通过从刚需到体验的降维,从而在安全、信任及伦理等问题面前绕道走。
不可否认,在ADAS市场上,“自动驾驶”还仅仅是一个可以锦上添花式的存在,其与自动驾驶的终极愿景还有很大落差的。
不过瘦死的骆驼比马大,就算是在乘用车场景里做“技术降维”,这也已经是今天看来,赛道内最澎湃的一股力量了。
第三个,把安全议题分为量和程度两个思考维度
信任问题的源头归根结底还是安全,但安全并不是自动驾驶路上一头笼统的拦路虎。
谈擎说AI认为,自动驾驶关于安全还是可以有两个划分,一个是量,一个是程度。
举个简单的例子,鲜有人会因事故风险而不坐私家车,但不少人会因为担心飞机不安全而坚决不坐飞机。
这其实就是量和程度的区别,乘用车的事故率比飞机高很多,但对人的伤害程度却比飞机事故低得多。
人之常情告诉我们,大众对前者往往包容度会更高,但对后者的包容度则很低,这样的敏感点放到新技术上,同样会更进一步放大。
到了这里,我们进一步看一个例子,那就是关于自动驾驶落地问题很多人都在推崇的Robotruck。
对干线物流场景的青睐者们认为,干线物流路线相对封闭固定,基于今天的自动驾驶技术,Robotruck发生事故的概率“量”,会较不确定性更多的城市场景低很多。
但谈擎说AI认为,把安全的“量”这一衡量标准优化,对于自动驾驶大规模普及而言,今天能够起到的作用其实是极其有限的。
原因在于,尽管相对封闭,但干线物流本质上还是要在非封闭的高速场景下参与交通,虽说可以把事故从量的层面压低概率,但如果真的发生事故,基于卡车高速、大载重等特点,造成的后果从程度上来讲,很可能是相当惨重的。
这似乎也就是为何早在2017年前后,基于业务成本驱动,阿里、京东等电商巨头都风风火火入局L4干线物流,被誉为“自动驾驶第一股”的图森未来,天眼查APP信息显示,其中国公司北京图森未来科技有限公司也早于2016年就已成立,这几年一路高歌,但到了今天,大家的结果大抵和Robotaxi一样,绝大多数还是困在路测里。
不难发现,Robotaxi也好,Robotruck也罢,本质上两者在做的事情没有区别,想要实现都还是得去解决问题,而不是避免问题。
这也就意味着,在无法保证道路上没有人这一要素参与,或者无法保证百分百能避免事故发生之前,Robotruck想让法律法规真正放权大规模商业化,难度很可能并不会较Robotaxi小太多。
从“硬刚”到“避免”:L4寒冬里的火绒
基于以上分析,谈擎说AI认为,如果有场景可以把跟安全、信任及伦理等等问题正面刚,转化为巧妙避免这些问题,其将会有望成为助力现阶段自动驾驶破局的关键场景。
那么除了乘用车ADAS,行业今天还可能有哪些机遇?
其实不难发现,符合“避免”要素的细分场景并非没有,虽说前景可能没有Robotaxi大,但较乘用车ADAS,却有望让相对原汁原味的L4或L5上车,以持续供养技术攀峰:
首先是非参与交通的封闭场景,如矿区、港口等等。
封闭场景无需过多赘述,就像是在工厂里引进自动化器械,只要人的要素能够完美摘除,剩下的其实就是相对单纯的成本博弈。
比如无人矿车,虽说前景没有乘用车市场大,但今天已有不少玩家在此聚集,没有了道路法规约束,路测其实一定程度上就是实战,这对于规模化应用而言,已经算是有了得天独厚的优势。
其次,是能把安全在“程度”方面拉低的一些交通参与场景,如无人环卫、无人配送。
其可行性的核心同封闭场景其实是相通的,封闭场景是摘除风险,无人配送等的核心优势则是可以有效弱化风险。
接下来,我们不妨以前景和难度都更大,争议也很高的无人配送场景为例,简单分析一波。
这两年无人配送热度不低,外卖、电商等平台都有很大的斗志,但不看好无人配送的声音也非常多。
因为客观来看,无人配送在“上门”这一问题上今天确实走得不那么顺利,比方说配送车在楼下等候,会很大程度上牺牲消费者今天既有的上门送货体验,“航母”式放无人机等天马行空的方案也多少有些架空现实,因此很多人认为不可行。
不过被很多人一棒子打死的上门问题,也不是没有解法。
谈擎说AI认为,无论是快递还是外卖,在需要上楼、上门送货等末端配送场景里,其实均可参照今天的菜鸟驿站模式,由无人配送车将货物分发到终端网点,从而用更少且可以摊薄成本的人力资源在终端驿站进行调度,满足有上门送货需求的客户意愿。
至于外卖场景,非标准化的取货挑战无人车如何攻破?今天仍有待探讨。不过我们重点要说的还是上路后的安全,这是一切自动驾驶场景想要落地的前提。
谈擎说AI认为,之所以说无人配送落地有更快的可能性,就是因为其最大的优势在于运力终端有着低速、体积小这些特点,使得物理撞击“程度”风险更低,算法遇到极端情况的概率也会更低。
基于理论上的可行性,我们不妨复盘一下近期无人配送的相关事故,这一年里,美团无人车给我们贡献了两个较火的案例,一是同私家车相撞,一是同公交车相撞。
从结果来看也是如此,虽然均为直接碰撞,但事故最终结果都相对较轻微,也算是一定程度上印证了其“程度”方面的安全性。
但尽管如此,两则事故还是把无人配送一时间里推向了风口浪尖。究其原因,谈擎说AI认为,其中很大的一个争议点在于,无人配送车给其他参与交通的主流机动车添加了额外风险因素。
尽管无人配送车可以低速,小体积,甚至后续还能在外部给车武装上气囊,把直接碰撞的致伤风险最大化降低,但比如因A车辆对无人车进行闪避,撞到了B车辆,安全风险便会再度不可控。
虽然囿于技术,今天任何有一定规模的自动驾驶项目都还无法保证百分百零事故,但最起码在比如降低事故程度这样的安全规避的思路上,今天已经有了些许可能性。
这样的可能性在僵局面前,也许就是冬夜里的一簇火绒。
原文标题 : 自动驾驶,一场关于信任的战争